Shine Plus User manual Addendum for

ARTITEC E Plan Coaches

Functions and Output mapping

The usable functions for the Shine Plus Artitec E Plan lighting boards are F0, F1-F16.

The on board decoder has a total of 16 outputs. The LED arrangement is depending on the model (BDAD, CDBD, POST or CKDRD). The outputs Out14/Out15 are used for front/rear tail lights in each of the models. The other LED assignment is presented in the following pages.

For every function mapping 4 CVs are required. Each of the functions is using 2 CVs for forward direction mapping and 2 CVs for the reverse direction mapping of the possible 16 outputs. The 4 CV groups are found in the CV table in successive order for every function. Setting different output mapping for forward and reverse direction for a function (in the corresponding CVs) will allow switching on/off different outputs (LEDs) for forward and reverse direction of travel.

The order of the 4 CVs are:
$1^{\text {st }} \mathrm{CV}$: forward direction for outputs 1-8 (bits 0-7)
$2^{\text {nd }} \mathrm{CV}$: forward direction for outputs $9-16$ (bits 0-7)
$3^{\text {rd }} \mathrm{CV}$: reverse direction for outputs $1-8$ (bits $0-7$)
$4^{\text {th }} \mathrm{CV}$: reverse direction for outputs $9-16$ (bits $0-7$)
In the illustrations LEDs having the same number (starting with O..) are connected to the same output. They are controlled together. When an output is activated by a function, all LEDs connected to that output will be activated. This is the case of the corridor lighting in all models.

LEDs to Output assignments

(LED side view of the printed circuit board)

BDAD
(Outputs/ LEDs 13 and 16 not used)

CDBD

(Outputs/ LEDs 13 and 16 not used)

(Outputs/ LEDs 11, 12, 13 and 16 not used)

(Outputs/ LEDs 12, 13 and 16 not used)

CV TABLE

The default values are referring to the POST wagon. For the other models the default values might be different.

CV	Default value	Value Range	Description
1	3	0-127	Decoder Address Short, 7 bits
7	4	-	Software Version (only readable)
8	78	-	Manufactured ID/RESET (readable $78=$ train-O-matic, any written value will reset the decoder to the factory default values
13	0	0-255	Analog Mode, Alternate Mode Function Status F1-F8 Bit $\begin{aligned} 0 & =0(0): \quad \text { F1 not active in Analog mode } \\ & =1(1): \text { F1 active in Analog mode } \\ \text { Bit } 1 & =0(0): \quad \text { F2 not active in Analog mode } \\ & =1(2): \text { F2 active in Analog mode } \\ \text { Bit } 2 & =0(0): \quad \text { F3 not active in Analog mode } \\ & =1(4): \text { F3 active in Analog mode } \\ \text { Bit } 3 & =0(0): \text { F4 not active in Analog mode } \\ & =1(8): \text { F4 active in Analog mode } \\ \text { Bit } 4 & =0(0): \text { F5 not active in Analog mode } \\ & =1(16): \text { F5 active in Analog mode }\end{aligned}$

			$\begin{aligned} \text { Bit } 5 & =0(0): \text { F6 not active in Analog mode } \\ & =1(32): \text { F6 active in Analog mode } \\ \text { Bit } 6 & =0(0): \text { F7 not active in Analog mode } \\ & =1(64) \text { F7 active in Analog mode } \\ \text { Bit } 7 & =0(0): \text { F8 not active in Analog mode } \\ & =1(255): \text { F8 active in Analog mode } \end{aligned}$
14	$\begin{aligned} & 3= \\ & 1+ \\ & 2 \end{aligned}$	0-255	```Analog Mode, Alternate Mode Function. Status F0f,F0r, F9-F14, Bit \(0=0(0)\) : FOf not active in Analog mode \(=1(1)\) : F0f active in Analog mode Bit \(1=0(0)\) : F0r not active in Analog mode \(=1(2)\) : F0r active in Analog mode Bit \(2=0(0)\) : F9 not active in Analog mode \(=1(4):\) F9 active in Analog mode Bit \(3=0(0)\) : F10 not active in Analog mode \(=1(8):\) F10 active in Analog mode Bit \(4=0(0)\) : F11 not active in Analog mode \(=1(16):\) F11 active in Analog mode Bit \(5=0(0)\) : F12 not active in Analog mode \(=1(32):\) F12 active in Analog mode Bit \(6=0(0):\) F13 not active in Analog mode \(=1(64)\) F13 active in Analog mode Bit \(7=0(0)\) : F14 not active in Analog mode \(=1(255):\) F14 active in Analog mode```

15	0	$0-7$	LockValue: Enter the value to match Lock ID in CV16 to unlock CV programming. No action and ACK will be performed by the decoder when LockValue is different from LockID. In this situation only CV15 write is allowed.
16	0	$0-7$	LockID: To prevent accidental programming use unique ID number for decoders with same address (0..7) 1-loco decoder, 2-sound decoder, 3- function decoder, ...
17	192	3	$192-255$
19	0	$0-255$	Extended Address, Address High
21	0	$0-127$	Extended Address, Address Low If CV \#19 > 0: Speed and direction is governed by this consist address (not the individual address in CV \#1 or \#17+18); functions are controlled by either the consist address or individual address, see CV'es \#21 + 22.

			Bit $4=0(0):$ F5 controlled by individual address $=1(16):$ by consist address Bit $5=0(0)$: F6 controlled by individual address $=1(32)$ by consist address Bit $6=0(0)$: F7 controlled by individual address $=1(64):$ by consist address Bit $7=0(0)$: F8 controlled by individual address $=1(255)$: by consist address
22	0	0-63	Functions defined here will be controlled by the consist address. Bit $0=0(0)$: F 0 (forw.) controlled by individual address $=1(1):$ by consist address Bit $1=0(0):$ F0 (rev.) controlled by individual address $=1(2):$ by consist address Bit $2=0(0)$: F9 controlled by individual address $=1(4)$: \qquad by consist address Bit $3=0(0)$: F10 controlled by individual address $=1(8)$: by consist address Bit $4=0(0)$: F11 controlled by individual address = 1(16): by consist address Bit $5=0(0)$: F12 controlled by individual address $=1(32)$: by consist address
29	$6=$	0-63	Configuration Data Bit $0=0(0)$: Locomotive Direction normal

	$\begin{aligned} & 16+ \\ & 32+ \\ & 64+ \\ & 128 \end{aligned}$		$\begin{aligned} \text { Bit } 4 & =0(0): \text { Out } 5 \text { not active on F0 forward } \\ & =1(16): \text { Out } 5 \text { active on F0 forward } \\ \text { Bit } 5 & =0(0): \text { Out } 6 \text { not active on F0 forward } \\ & =1(32): \text { Out6 active on F0 forward } \\ \text { Bit } 6 & =0(0): \text { Out } 7 \text { not active on F0 forward } \\ & =1(64): \text { Out } 7 \text { active on F0 forward } \\ \text { Bit } 7 & =0(0): \text { Out } 8 \text { not active on F0 forward } \\ & =1(128): \text { Out } 8 \text { active on F0 forward } \end{aligned}$
34	$\begin{aligned} & 31= \\ & 1+ \\ & 2+ \\ & 4+ \\ & 8+ \\ & 16+ \end{aligned}$	0-255	F0, Forward move mapping, high byte Bit $0=0(0)$: Out9 not active on F0 forward = 1(1): Out9 active on F0 forward Bit $1=0(0)$: Out10 not active on F0 forward = 1(2): Out10 active on F0 forward Bit $2=0(0)$: Out1 1 not active on F0 forward $=1(4)$: Out11 active on F0 forward Bit $3=0(0)$: Out12 not active on F0 forward $=1(8)$: Out12 active on F0 forward Bit $4=0(0)$: Out13 not active on F0 forward $=1(16):$ Out13 active on F0 forward Bit $5=0(0)$: Out14 not active on F0 forward $=1(32):$ Out14 active on F0 forward Bit $6=0(0)$: Out15 not active on F0 forward $=1(64)$: Out15 active on F0 forward Bit $7=0(0)$: Out16 not active on F0 forward

			= 1(128): Out16 active on F0 forward
35	255=	0-255	F0, Backward move mapping, low byte
	1+		Bit $0=0(0)$: Out1 not active on $F 0$ backward = 1(1): Out1 active on F0 backward
			Bit $1=0(0)$: Out2 not active on F0 backward
	2+		= 1(2): Out2 active on F0 backward
			Bit $2=0(0)$: Out3 not active on F0 backward
	4+		Bit 1(4): Out3 active on F0 backward
			Bit $3=0(0)$: Out 4 not active on F0 backward
	8+		Sit $=1(8)$: Out 4 active on F0 backward
	16+		Bit $4=0(0)$: Out5 not active on F0 backward $=1(16):$ Out5 active on F0 backward
			Bit $5=0(0)$: Out6 not active on F0 backward
	32+		= 1(32): Out6 active on F0 backward
			Bit 6=0(0): Out7 not active on F0 backward
	64+		= 1(64): Out7 active on F0 backward
	128		Bit $7=0(0)$: Out8 not active on F0 backward $=1$ (128): Out8 active on F0 backward
36	$31=$	0-255	F0, Backward move mapping, high byte
			Bit $0=0(0)$: Out9 not active on F0 backward
	1+		= 1(1): Out9 active on F0 backward
			Bit $1=0(0)$: Out10 not active on F0 backward
	2+		= 1(2): Out10 active on F0 backward
			Bit $2=0(0)$: Out11 not active on F0 backward

	4+ 8+ $16+$		= 1(4): Out11 active on F0 backward Bit $3=0(0)$: Out12 not active on F0 backward $=1(8)$: Out12 active on F0 backward Bit $4=0(0)$: Out13 not active on F0 backward = 1(16): Out13 active on F0 backward Bit $5=0(0)$: Out14 not active on F0 backward = 1(32): Out14 active on F0 backward Bit $6=0(0)$: Out15 not active on F0 backward = 1(64): Out15 active on F0 backward Bit $7=0(0)$: Out16 not active on F0 backward $=1(128)$: Out16 active on F0 backward
37	$240=$ 16+ $32+$	0-255	

			Bit $6=0(0):$ Out7 not active on F1 forward $=1(64):$ Out7 active on F1 forward Oit $=1(0):$ Out8 not active on F1 forward
38	128		

	$\begin{aligned} & 16+ \\ & 32+ \\ & 64+ \\ & 128 \\ & \hline \end{aligned}$		
40	1 1	0-255	F1, Backward move mapping, high byte Bit $0=0(0)$: Out 9 not active on F1 backward = 1(1): Out9 active on F1 backward Bit $1=0(0)$: Out10 not active on F1 backward $=1(2)$: Out10 active on F1 backward Bit $2=0(0)$: Out11 not active on F1 backward = 1(4): Out11 active on F1 backward Bit $3=0(0)$: Out12 not active on F1 backward = 1(8): Out12 active on F1 backward Bit $4=0(0)$: Out13 not active on F1 backward


			```= 1(16): Out13 active on F1 backward Bit \(5=0(0)\) : Out14 not active on F1 backward = 1(32): Out14 active on F1 backward Bit \(6=0(0)\) : Out15 not active on F1 backward = 1(64): Out15 active on F1 backward Bit \(7=0(0)\) : Out 16 not active on F1 backward \(=1(128)\) : Out16 active on F1 backward```
41	$15=$   1+   2+   4+   8	0-255	


42	$\begin{aligned} & 22= \\ & 2+ \\ & 4+ \\ & 16 \end{aligned}$	0-255	```F2 mapping, Forward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F2 = 1(1): Out9 active on F2 Bit \(1=0(0)\) : Out10 not active on F2 = 1(2): Out10 active on F2 Bit \(2=0(0)\) : Out11 not active on F2 = 1(4): Out11 active on F2 Bit \(3=0(0)\) : Out12 not active on F2 = 1(8): Out12 active on F2 Bit \(4=0(0)\) : Out13 not active on F2 \(=1(16):\) Out 13 active on F2 Bit \(5=0(0)\) : Out14 not active on F2 \(=1(32):\) Out14 active on F2 Bit \(6=0(0)\) : Out15 not active on F2 \(=1(64):\) Out15 active on F2 Bit \(7=0(0)\) : Out16 not active on F2 \(=1(128)\) : Out16 active on F2```
43	$\begin{aligned} & 15= \\ & 1+ \\ & 2+ \\ & 4+ \end{aligned}$	0-255	F2 mapping, Backward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F2   = 1(1): Out1 active on F2   Bit $1=0(0)$ : Out 2 not active on F2   = 1(2): Out2 active on F2   Bit $2=0(0)$ : Out 3 not active on F2   = 1(4): Out3 active on F2


	8		
44	$22=$   2+   4+   16	0-255	```F2 mapping, Backward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F2 = 1(1): Out9 active on F2 Bit \(1=0(0)\) : Out10 not active on F2 = 1(2): Out10 active on F2 Bit \(2=0(0)\) : Out11 not active on F2 = 1(4): Out11 active on F2 Bit \(3=0(0)\) : Out12 not active on F2 \(=1(8):\) Out12 active on F2 Bit \(4=0(0)\) : Out13 not active on F2 \(=1(16):\) Out13 active on F2 Bit \(5=0(0)\) : Out14 not active on F2 = 1(32): Out14 active on F2 Bit \(6=0(0)\) : Out15 not active on F2```


			$\begin{aligned} & =1(64): \text { Out15 active on F2 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F2 } \\ & =1(128): \text { Out16 active on F2 } \end{aligned}$
45	80	0-255	F3 mapping, Forward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F3   = 1(1): Out1 active on F3   Bit $1=0(0)$ : Out 2 not active on F3   $=1(2)$ : Out2 active on F3   Bit $2=0(0)$ : Out3 not active on F3   $=1(4):$ Out 3 active on F3   Bit $3=0(0)$ : Out 4 not active on F3   = 1(8): Out4 active on F3   Bit $4=0(0)$ : Out5 not active on F3   $=1(16):$ Out5 active on F3   Bit $5=0(0)$ : Out6 not active on F3   $=1(32)$ : Out6 active on F3   Bit $6=0(0)$ : Out7 not active on F3   = 1(64): Out7 active on F3   Bit $7=0(0)$ : Out8 not active on F3   $=1(128)$ : Out8 active on F3
46	$64=$	0-255	F3 mapping, Forward move mapping, high byte $\text { Bit } 0=0(0) \text { : Out } 9 \text { not active on F3 }$   = 1(1): Out9 active on F3   Bit $1=0(0)$ : Out10 not active on F3


	64		$=1(2):$ Out10 active on F3   Bit 2 $=0(0):$ Out11 not active on F3    $=1(4):$ Out11 active on F3   Bit 3 $=0(0):$ Out12 not active on F3    $=1(8):$ Out12 active on F3   Bit 4 $=0(0):$ Out13 not active on F3    $=1(16):$ Out13 active on F3   Bit 5 $=0(0):$ Out14 not active on F3    $=1(32):$ Out1 4 active on F3   Bit 6 $=0(0):$ Out15 not active on F3    $=1(64):$ Out15 active on F3   Bit 7 $=0(0):$ Out16 not active on F3    $=1(128):$ Out16 active on F3
47	10	0-255	F3 mapping, Backward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F3   = 1(1): Out1 active on F3   Bit $1=0(0)$ : Out 2 not active on F3   = 1(2): Out2 active on F3   Bit $2=0(0)$ : Out3 not active on F3   = 1(4): Out3 active on F3   Bit $3=0(0)$ : Out 4 not active on F3   = 1(8): Out4 active on F3   Bit $4=0(0)$ : Out5 not active on F3   $=1(16):$ Out5 active on F3


			$\begin{aligned} \text { Bit } 5 & =0(0): \text { Out6 not active on F3 } \\ & =1(32): \text { Out6 active on F3 } \\ \text { Bit } 6 & =0(0): \text { Out7 not active on F3 } \\ & =1(64): \text { Out7 active on F3 } \\ \text { Bit } 7 & =0(0): \text { Out8 not active on F3 } \\ & =1(128): \text { Out8 active on F3 } \end{aligned}$
48	0	0-255	```F3 mapping, Backward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F3 = 1(1): Out9 active on F3 Bit \(1=0(0)\) : Out10 not active on F3 = 1(2): Out10 active on F3 Bit \(2=0(0)\) : Out11 not active on F3 = 1(4): Out11 active on F3 Bit \(3=0(0)\) : Out12 not active on F3 \(=1(8):\) Out 12 active on F3 Bit \(4=0(0)\) : Out13 not active on F3 \(=1(16):\) Out13 active on F3 Bit \(5=0(0)\) : Out14 not active on F3 = 1(32): Out14 active on F3 Bit \(6=0(0)\) : Out15 not active on F3 = 1(64): Out15 active on F3 Bit \(7=0(0)\) : Out16 not active on F3 \(=1(128)\) : Out16 active on F3```
49	0	0-255	F4 mapping, Forward move mapping, low byte


50	0	0-255	$\begin{aligned} & \text { F4 mapping, Forward move mapping, high byte } \\ & \begin{aligned} \text { Bit } 0 & =0(0): \text { Out } 9 \text { not active on F4 } \\ & =1(1): \text { Out } 9 \text { active on F4 } \\ \text { Bit } 1 & =0(0): \text { Out10 not active on F4 } \\ & =1(2): \text { Out10 active on F4 } \\ \text { Bit } 2 & =0(0): \text { Out11 not active on F4 } \\ & =1(4): \text { Out11 active on F4 } \\ \text { Bit } 3 & =0(0): \text { Out12 not active on F4 } \end{aligned} \end{aligned}$


			$\begin{aligned} & =1(8): \text { Out12 active on F4 } \\ \text { Bit } 4 & =0(0): \text { Out13 not active on F4 } \\ & =1(16): \text { Out13 active on F4 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F4 } \\ & =1(32): \text { Out14 active on F4 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F4 } \\ & =1(64): \text { Out15 active on F4 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F4 } \\ & =1(128): \text { Out16 active on F4 } \end{aligned}$
51	0	0-255	```F4 mapping, Backward move mapping, low byte Bit \(0=0(0)\) : Out1 not active on F4 = 1(1): Out1 active on F4 Bit \(1=0(0)\) : Out 2 not active on F4 = 1(2): Out2 active on F4 Bit \(2=0(0)\) : Out 3 not active on F4 = 1(4): Out3 active on F4 Bit \(3=0(0)\) : Out4 not active on F4 = 1(8): Out4 active on F4 Bit \(4=0(0)\) : Out5 not active on F4 \(=1(16):\) Out 5 active on F4 Bit \(5=0(0)\) : Out6 not active on F4 \(=1(32):\) Out6 active on F4 Bit \(6=0(0)\) : Out7 not active on F4 \(=1\) (64): Out7 active on F4```


			$\begin{aligned} \text { Bit } 7 & =0(0): \text { Out8 not active on F4 } \\ & =1(128): \text { Out8 active on F4 } \end{aligned}$
52	$32=$	0-255	F4 mapping, Backward move mapping, high byte   Bit $0=0(0)$ : Out 9 not active on F4   = 1(1): Out9 active on F4   Bit $1=0(0)$ : Out 10 not active on F4   = 1(2): Out10 active on F4   Bit $2=0(0)$ : Out11 not active on F4   = 1(4): Out11 active on F4   Bit $3=0(0)$ : Out12 not active on F4   = 1(8): Out12 active on F4   Bit $4=0(0)$ : Out13 not active on F4   = 1(16): Out13 active on F4   Bit $5=0(0)$ : Out 14 not active on F4   $=1(32):$ Out14 active on F4   Bit $6=0(0)$ : Out 15 not active on F4   $=1(64):$ Out15 active on F4   Bit $7=0(0)$ : Out16 not active on F4   $=1(128)$ : Out16 active on F4
53	0	0-255	$\begin{aligned} & \text { F5 mapping, Forward move mapping, low byte } \\ & \begin{aligned} \text { Bit } 0 & =0(0): \text { Out1 not active on F5 } \\ & =1(1): \text { Out } 1 \text { active on F5 } \\ \text { Bit } 1 & =0(0): \text { Out } 2 \text { not active on F5 } \\ & =1(2): \text { Out2 active on F5 } \end{aligned} \end{aligned}$


			$\begin{aligned} \text { Bit } \begin{aligned} & =0(0): \text { Out } 3 \text { not active on F5 } \\ & =1(4): \text { Out3 active on F5 } \\ \text { Bit } 3 & =0(0): \text { Out } 4 \text { not active on F5 } \\ & =1(8): \text { Out } 4 \text { active on F5 } \\ \text { Bit } 4 & =0(0): \text { Out5 not active on F5 } \\ & =1(16): \text { Out5 active on F5 } \\ \text { Bit } 5 & =0(0): \text { Out } 6 \text { not active on F5 } \\ & =1(32): \text { Out6 active on F5 } \\ \text { Bit } 6 & =0(0): \text { Out } 7 \text { not active on F5 } \\ & =1(64): \text { Out } 7 \text { active on F5 } \\ \text { Bit } 7 & =0(0): \text { Out not active on F5 } \\ & =1(128): \text { Out8 active on F5 } \end{aligned} .=\text { en } \end{aligned}$
54	0	0-255	$\begin{aligned} & \text { F5 mapping, Forward move mapping, high byte } \\ & \begin{aligned} \text { Bit } 0 & =0(0): \text { Out } 9 \text { not active on F5 } \\ & =1(1): \text { Out } 9 \text { active on F5 } \\ \text { Bit } 1 & =0(0): \text { Out10 not active on F5 } \\ & =1(2): \text { Out10 active on F5 } \\ \text { Bit } 2 & =0(0): \text { Out11 not active on F5 } \\ & =1(4): \text { Out11 active on F5 } \\ \text { Bit } 3 & =0(0): \text { Out12 not active on F5 } \\ & =1(8): \text { Out12 active on F5 } \\ \text { Bit } 4 & =0(0): \text { Out13 not active on F5 } \\ & =1(16): \text { Out13 active on F5 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F5 } \end{aligned} \end{aligned}$


			$\begin{aligned} & =1(32): \text { Out14 active on F5 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F5 } \\ & =1(64): \text { Out15 active on F5 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F5 } \\ & =1(128): \text { Out16 active on F5 } \end{aligned}$
55	0	0-255	F5 mapping, Backward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F5   = 1(1): Out 1 active on F5   Bit $1=0(0)$ : Out 2 not active on F5   = 1(2): Out2 active on F5   Bit $2=0(0)$ : Out 3 not active on F5   = 1(4): Out3 active on F5   Bit $3=0(0)$ : Out4 not active on F5   $=1(8):$ Out4 active on F5   Bit $4=0(0)$ : Out5 not active on F5   $=1(16):$ Out 5 active on F5   Bit $5=0(0)$ : Out 6 not active on F5   $=1(32)$ : Out6 active on F5   Bit $6=0(0)$ : Out7 not active on F5   $=1(64):$ Out7 active on F5   Bit $7=0(0)$ : Out8 not active on F5   $=1(128)$ : Out8 active on F5
56	0	0-255	F5 mapping, Backward move mapping, high byte Bit $0=0(0)$ : Out9 not active on F5


			$=1(1):$ Out9 active on F5   Bit 1 $=0(0):$ Out10 not active on F5    $=1(2):$ Out10 active on F5   Bit 2 $=0(0):$ Out11 not active on F5    $=1(4):$ Out11 active on F5   Bit 3 $=0(0):$ Out12 not active on F5    $=1(8):$ Out12 active on F5   Bit 4 $=0(0):$ Out13 not active on F5    $=1(16):$ Out13 active on F5   Bit 5 $=0(0):$ Out14 not active on F5    $=1(32):$ Out14 active on F5   Bit 6 $=0(0):$ Out15 not active on F5    $=1(64):$ Out15 active on F5   Bit 7 $=0(0):$ Out16 not active on F5    $=1(128):$ Out16 active on F5
57	0	0-255	```F6 mapping, Forward move mapping, low byte Bit \(0=0(0)\) : Out1 not active on F6 = 1(1): Out1 active on F6 Bit \(1=0(0)\) : Out 2 not active on F6 = 1(2): Out2 active on F6 Bit \(2=0(0)\) : Out 3 not active on F6 = 1(4): Out 3 active on F6 Bit \(3=0(0)\) : Out4 not active on F6 \(=1(8):\) Out4 active on F6```


			$\begin{aligned} \text { Bit } 4 & =0(0): \text { Out5 not active on F6 } \\ & =1(16): \text { Out5 active on F6 } \\ \text { Bit } 5 & =0(0): \text { Out6 not active on F6 } \\ & =1(32): \text { Out6 active on F6 } \\ \text { Bit } 6 & =0(0): \text { Out } 7 \text { not active on F6 } \\ & =1(64): \text { Out7 active on F6 } \\ \text { Bit } 7 & =0(0): \text { Out } 8 \text { not active on F6 } \\ & =1(128): \text { Out } 8 \text { active on F6 } \end{aligned}$
58	0	0-255	```F6 mapping, Forward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F6 = 1(1): Out9 active on F6 Bit \(1=0(0)\) : Out10 not active on F6 = 1(2): Out10 active on F6 Bit \(2=0(0)\) : Out11 not active on F6 = 1(4): Out11 active on F6 Bit \(3=0(0)\) : Out12 not active on F6 \(=1(8):\) Out12 active on F6 Bit \(4=0(0)\) : Out13 not active on F6 = 1(16): Out13 active on F6 Bit \(5=0(0)\) : Out14 not active on F6 = 1(32): Out14 active on F6 Bit \(6=0(0)\) : Out15 not active on F6 = 1(64): Out15 active on F6 Bit \(7=0(0)\) : Out16 not active on F6```


|  |  |  | $=1(128):$ Out16 active on F6 |
| :--- | :--- | :--- | :--- |, |  |  |
| ---: | :--- |
| 59 | 0 |


			$\begin{aligned} &=1(4): \text { Out11 active on F6 } \\ & \text { Bit } 3=0(0): \text { Out12 not active on F6 } \\ &=1(8): \text { Out12 active on F6 } \\ & \text { Bit } 4=0(0): \text { Out13 not active on F6 } \\ &=1(16): \text { Out13 active on F6 } \\ & \text { Bit } 5=0(0): \text { Out14 not active on F6 } \\ &=1(32): \text { Out14 active on F6 } \\ & \text { Bit } 6=0(0): \text { Out15 not active on F6 } \\ &=1(64): \text { Out15 active on F6 } \\ & \text { Bit } 7=0(0): \text { Out16 not active on F6 } \\ &=1(128): \text { Out16 active on F6 } \\ & \hline \end{aligned}$
61	0	0-3	MM multi addres mode   0 - respond only to base address from CV1 (F0 ... F4)   1 - respond even to base address +1 (F5 ... F8)   2 - respond even to base address +2 (F9 ... F12)   3 - respond even to base address +3 (F13 ... F16)
62	0	0-1	Digital reception mode, it's set automatically, don't need to be modified, can be just read: $\begin{array}{\|l} 0-\mathrm{DCC} \\ 1-\mathrm{MM} \end{array}$


105	0	$0-255$	USER data
106	0	$0-255$	USER data
112	15	$1-127$	FadeIN AUX Light Effect Fade ON, ex.: 1=8ms, 15=120ms 125=1000ms
113	3	$1-127$	FadeOUT AUX Light Effect Fade OFF
114	3	$0-7$	Delay, Flourescent Tube Start, Blinking Delay   $1-8$ delay step [0..7]
115	10	$1-255$	Random Time Period, 1s-255s
116	3	$0-7$	Flicker Period: Fast-Slow 0..7 val
117	3	$0-7$	Defective Neon effects repetition time, 0 fast repetition, 7 slow repetition
120	127	$0-255$	Out 1 Light intensity, [1-255]
121	127	$0-255$	Out 2 Light intensity, [1-255]
122	127	$0-255$	Out 3 Light intensity, [1-255]
123	127	$0-255$	Out 4 Light intensity, [1-255]
124	127	$0-255$	Out 5 Light intensity, [1-255]
125	127	$0-255$	Out 6 Light intensity, [1-255]
126	127	$0-255$	Out 7 Light intensity, [1-255]
127	127	$0-255$	Out 8 Light intensity, [1-255]
128	127	$0-255$	Out 9 Light intensity, [1-255]
129	127	$0-255$	Out 10 Light intensity, [1-255]
130	127	$0-255$	Out 11 Light intensity, [1-255]


131	127	$0-255$	Out 12 Light intensity, [1-255]
132	127	$0-255$	Out 13 Light intensity, [1-255]
133	127	$0-255$	Out 14 Light intensity, [1-255]
134	127	$0-255$	Out 15 Light intensity, [1-255]
135	127	$0-255$	Out 16 Light intensity, [1-255]
136	0	$0-255$	Out 1, Effect:   Bit7= 128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
137	0	$0-255$	Out 2, Effect:   Bit7= 128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
138	0	$0-255$	Out 3, Effect:   Bit7= 128 Random operation / 0 normal operation +


			Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
139	0	$0-255$	Out 4, Effect:   Bit7= 128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
140	0	$0-255$	Out 5, Effect:   Bit7=128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
141	0	$0-255$	Out 6, Effect:   Bit7= 128 Random operation / 0 normal operation +


			Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
142	0	$0-255$	Out 7, Effect:   Bit7= 128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
143	0	$0-255$	Out 8, Effect:   Bit7=128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
144	0	$0-255$	Out 9, Effect:   Bit7= 128 Random operation / 0 normal operation +


			Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
145	0	$0-255$	Out 10, Effect:   Bit7= 128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
146	0	$0-255$	Out 11, Effect:   Bit7= 128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
147	0	$0-255$	Out 12, Effect:   Bit7= 128 Random operation / 0 normal operation +


			Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
148	0	$0-255$	Out 13, Effect:   Bit7= 128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
149	0	$0-255$	Out 14, Effect:   Bit7= 128 Random operation / 0 normal operation +   Bit0,1,3 =   0-Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
150	0	$0-255$	Out 15, Effect:   Bit7= 128 Random operation / 0 normal operation +


			Bit0,1,3 =   0 -Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
151	0	0-255	Out 16, Effect:   Bit7=128 Random operation / 0 normal operation + Bit0,1,3 =   0 -Continuous,   1-Fade Lamp,   2-Fluorescent Tube,   3-Flickering Lamp,   4- Defective Neon effect
152	0	0-1	Save Last State 1-Save 0-Don't Save
160	0	0-255	$\begin{aligned} & \text { F7 mapping, Forward move mapping, low byte } \\ & \text { Bit } 0=0(0): \text { Out } 1 \text { not active on F7 } \\ & \\ & \quad=1(1): \text { Out } 1 \text { active on F7 } \\ & \text { Bit } 1=0(0): \text { Out2 not active on F7 } \\ & \\ & \\ & =1(2): \text { Out2 active on F7 } \\ & \text { Bit } 2=0(0): \text { Out } 3 \text { not active on F7 } \\ & \\ & \\ & \text { Bit } 3=0(4): \text { Out3 active on F7 } \\ & \\ & \\ & \\ & =1(8): \text { Out } 4 \text { not active on F7 } \\ & \hline \end{aligned}$


161	0	0-255	F7 mapping, Forward move mapping, high byte   Bit $0=0(0)$ : Out 9 not active on F7   = 1(1): Out9 active on F7   Bit $1=0(0)$ : Out10 not active on F7   $=1(2):$ Out 10 active on F7   Bit $2=0(0)$ : Out11 not active on F7   $=1(4):$ Out 11 active on F7   Bit $3=0(0)$ : Out12 not active on F7   = 1(8): Out12 active on F7   Bit $4=0(0)$ : Out13 not active on F7   = 1(16): Out13 active on F7   Bit $5=0(0)$ : Out14 not active on F7   $=1(32):$ Out14 active on F7   Bit $6=0(0)$ : Out15 not active on F7   = 1(64): Out15 active on F7   Bit $7=0(0)$ : Out16 not active on F7


|  |  |  | $=1(128):$ Out16 active on F7 |
| :--- | :--- | :--- | :--- |, |  |  |
| ---: | :--- |
| 162 | 0 |


			$=1(4):$ Out11 active on F7   Bit 3 $=0(0):$ Out12 not active on F7    $=1(8):$ Out 12 active on F7   Bit 4 $=0(0):$ Out13 not active on F7    $=1(16):$ Out13 active on F7   Bit 5 $=0(0):$ Out14 not active on F7    $=1(32):$ Out 14 active on F7   Bit 6 $=0(0):$ Out15 not active on F7    $=1(64):$ Out 15 active on F7   Bit 7 $=0(0):$ Out 16 not active on F7    $=1(128):$ Out 16 active on F7
164	0	0-255	F8 mapping, Forward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F8   = 1(1): Out 1 active on F8   Bit $1=0(0)$ : Out 2 not active on F8   = 1(2): Out2 active on F8   Bit $2=0(0)$ : Out 3 not active on F8   = 1(4): Out 3 active on F8   Bit $3=0(0)$ : Out4 not active on F8   $=1(8):$ Out4 active on F8   Bit $4=0(0)$ : Out5 not active on F8   $=1(16):$ Out 5 active on F8   Bit $5=0(0)$ : Out 6 not active on F8   $=1(32)$ : Out6 active on F8


			$\begin{aligned} \text { Bit } 6 & =0(0): \text { Out7 not active on F8 } \\ & =1(64): \text { Out7 active on F8 } \\ \text { Bit } 7 & =0(0): \text { Out } 8 \text { not active on F8 } \\ & =1(128): \text { Out8 active on F8 } \end{aligned}$
165	0	0-255	F8 mapping, Forward move mapping, high byte   Bit $0=0(0)$ : Out 9 not active on F8   = 1(1): Out9 active on F8   Bit $1=0(0)$ : Out10 not active on F8   = 1(2): Out10 active on F8   Bit $2=0(0)$ : Out11 not active on F8   $=1(4):$ Out11 active on F8   Bit $3=0(0)$ : Out12 not active on F8   $=1(8):$ Out 12 active on F8   Bit $4=0(0)$ : Out13 not active on F8   $=1(16):$ Out13 active on F8   Bit $5=0(0)$ : Out14 not active on F8   $=1(32):$ Out14 active on F8   Bit $6=0(0)$ : Out15 not active on F8   $=1(64):$ Out15 active on F8   Bit $7=0(0)$ : Out 16 not active on F8   $=1(128)$ : Out16 active on F8
166	0	0-255	F8 mapping, Backward move mapping, low byte Bit $0=0(0)$ : Out1 not active on F8   = 1(1): Out1 active on F8


167	0	0-255	```F8 mapping, Backward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F8 = 1(1): Out9 active on F8 Bit \(1=0(0)\) : Out10 not active on F8 \(=1(2):\) Out10 active on F8 Bit \(2=0(0)\) : Out11 not active on F8 = 1(4): Out11 active on F8 Bit \(3=0(0)\) : Out12 not active on F8 = 1(8): Out12 active on F8 Bit \(4=0(0)\) : Out13 not active on F8```


			$\begin{aligned} & =1(16): \text { Out13 active on F8 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F8 } \\ & =1(32): \text { Out14 active on F8 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F8 } \\ & =1(64): \text { Out15 active on F8 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F8 } \\ & =1(128): \text { Out16 active on F8 } \end{aligned}$
168	0	0-255	F9 mapping, Forward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F9   = 1(1): Out1 active on F9   Bit $1=0(0)$ : Out 2 not active on F9   = 1(2): Out2 active on F9   Bit $2=0(0)$ : Out 3 not active on F9   = 1(4): Out3 active on F9   Bit $3=0(0)$ : Out4 not active on F9   $=1(8)$ : Out4 active on F9   Bit $4=0(0)$ : Out5 not active on F9   $=1(16):$ Out5 active on F9   Bit $5=0(0)$ : Out6 not active on F9   $=1(32)$ : Out6 active on F9   Bit $6=0(0)$ : Out7 not active on F9   = 1(64): Out7 active on F9   Bit $7=0(0)$ : Out8 not active on F9   = 1(128): Out8 active on F9


169	0	0-255	```F9 mapping, Forward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F9 = 1(1): Out9 active on F9 Bit \(1=0(0)\) : Out10 not active on F9 = 1(2): Out10 active on F9 Bit \(2=0(0)\) : Out11 not active on F9 = 1(4): Out11 active on F9 Bit \(3=0(0)\) : Out12 not active on F9 = 1(8): Out12 active on F9 Bit \(4=0(0)\) : Out13 not active on F9 = 1(16): Out13 active on F9 Bit \(5=0(0)\) : Out14 not active on F9 = 1(32): Out14 active on F9 Bit \(6=0(0)\) : Out15 not active on F9 = 1(64): Out15 active on F9 Bit \(7=0(0)\) : Out16 not active on F9 \(=1(128)\) : Out16 active on F9```
170	0	0-255	$\begin{aligned} & \text { F9 mapping, Backward move mapping, low byte } \\ & \text { Bit } \begin{aligned} 0 & =0(0): \text { Out } 1 \text { not active on F9 } \\ & =1(1): \text { Out } 1 \text { active on F9 } \\ \text { Bit } 1 & =0(0): \text { Out } 2 \text { not active on F9 } \\ & =1(2): \text { Out } 2 \text { active on F9 } \\ \text { Bit } 2 & =0(0): \text { Out } 3 \text { not active on F9 } \\ & =1(4): \text { Out } 3 \text { active on F9 } \end{aligned} \end{aligned}$


			$\begin{aligned} \text { Bit } 3 & =0(0): \text { Out } 4 \text { not active on F9 } \\ & =1(8): \text { Out } 4 \text { active on F9 } \\ \text { Bit } 4 & =0(0): \text { Out } 5 \text { not active on F9 } \\ & =1(16): \text { Out5 active on F9 } \\ \text { Bit } 5 & =0(0): \text { Out } 6 \text { not active on F9 } \\ & =1(32): \text { Out6 active on F9 } \\ \text { Bit } 6 & =0(0): \text { Out } 7 \text { not active on F9 } \\ & =1(64): \text { Out7 active on F9 } \\ \text { Bit } 7 & =0(0): \text { Out } 8 \text { not active on F9 } \\ & =1(128): \text { Out } 8 \text { active on F9 } \end{aligned}$
171	0	0-255	```F9 mapping, Backward move mapping, high byte Bit \(0=0(0)\) : Out9 not active on F9 = 1(1): Out9 active on F9 Bit \(1=0(0)\) : Out10 not active on F9 = 1(2): Out10 active on F9 Bit \(2=0(0)\) : Out1 1 not active on F9 = 1(4): Out11 active on F9 Bit \(3=0(0)\) : Out12 not active on F9 \(=1(8):\) Out12 active on F9 Bit \(4=0(0)\) : Out13 not active on F9 = 1(16): Out13 active on F9 Bit \(5=0(0)\) : Out14 not active on F9 = 1(32): Out14 active on F9 Bit \(6=0(0)\) : Out15 not active on F9```


			$\begin{aligned} & =1(64): \text { Out15 active on F9 } \\ \text { Bit } 7 & =0(0): \text { Out } 16 \text { not active on F9 } \\ & =1(128): \text { Out } 16 \text { active on F9 } \end{aligned}$
172	0	0-255	```F10 mapping, Forward move mapping, low byte Bit \(0=0(0)\) : Out1 not active on F10 \(=1(1):\) Out 1 active on F10 Bit \(1=0(0)\) : Out 2 not active on F10 = 1(2): Out2 active on F10 Bit \(2=0(0)\) : Out 3 not active on F10 = 1(4): Out3 active on F10 Bit \(3=0(0)\) : Out 4 not active on F10 \(=1(8):\) Out 4 active on F10 Bit \(4=0(0)\) : Out5 not active on F10 = 1(16): Out5 active on F10 Bit \(5=0(0)\) : Out6 not active on F10 = 1(32): Out6 active on F10 Bit \(6=0(0)\) : Out7 not active on F10 = 1(64): Out7 active on F10 Bit \(7=0(0)\) : Out8 not active on F10 \(=1(128)\) : Out8 active on F10```
173	0	0-255	F10 mapping, Forward move mapping, high byte   Bit $0=0(0)$ : Out9 not active on F10   = 1(1): Out9 active on F10   Bit $1=0(0)$ : Out10 not active on F10


			$\begin{aligned} & =1(2): \text { Out10 active on F10 } \\ \text { Bit } 2 & =0(0): \text { Out11 not active on F10 } \\ & =1(4): \text { Out11 active on F10 } \\ \text { Bit } 3 & =0(0): \text { Out12 not active on F10 } \\ & =1(8): \text { Out12 active on F10 } \\ \text { Bit } 4 & =0(0): \text { Out13 not active on F10 } \\ & =1(16): \text { Out13 active on F10 } \\ \text { Bit } 5 & =0(0): \text { Out1 } 14 \text { not active on F10 } \\ & =1(3): \text { Out1 } 4 \text { active on F10 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F10 } \\ & =1(64): \text { Out15 active on F10 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F10 } \\ & =1(128): \text { Out16 active on F10 } \end{aligned}$
174	0	0-255	$\begin{aligned} & \text { F10 mapping, Backward move mapping, low byte } \\ & \text { Bit } \begin{aligned} & =0(0): \text { Out } 1 \text { not active on F10 } \\ & =1(1): \text { Out } 1 \text { active on F10 } \\ \text { Bit } 1 & =0(0): \text { Out2 not active on F10 } \\ & =1(2): \text { Out2 active on F10 } \\ \text { Bit } 2 & =0(0): \text { Out } 3 \text { not active on F10 } \\ & =1(4): \text { Out3 active on F10 } \\ \text { Bit } 3 & =0(0): \text { Out } 4 \text { not active on F10 } \\ & =1(8): \text { Out } 4 \text { active on F10 } \\ \text { Bit } 4 & =0(0): \text { Out } 5 \text { not active on F10 } \\ & =1(16): \text { Out } 5 \text { active on F10 } \end{aligned} \end{aligned}$

$\left.\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{rl}\text { Bit } 5=0(0): \text { Out6 not active on F10 } \\ =1(32): \text { Out6 active on F10 }\end{array} \\ \text { Bit } 6=0(0): \text { Out7 not active on F10 } \\ =1(64): \text { Out7 active on F10 }\end{array}\right\}$

			Bit 0 $=0(0):$ Out1 not active on F11    $=1(1):$ Out 1 active on F11   Bit 1 $=0(0):$ Out 2 not active on F11    $=1(2):$ Out2 active on F11   Bit 2 $=0(0):$ Out3 not active on F11    $=1(4):$ Out3 active on F11   Bit 3 $=0(0):$ Out4 not active on F11    $=1(8):$ Out4 active on F11   Bit 4 $=0(0):$ Out5 not active on F11    $=1(16):$ Out5 active on F11   Bit 5 $=0(0):$ Out6 not active on F11    $=1(32):$ Out6 active on F11   Bit 6 $=0(0):$ Out7 not active on F11    $=1(64):$ Out 7 active on F11   Bit 7 $=0(0):$ Out8 not active on F11    $=1(128):$ Out8 active on F11
177	0	0-255	$\begin{aligned} & \text { F11 mapping, Forward move mapping, high byte } \\ & \text { Bit } \begin{aligned} & =0(0): \text { Out } 9 \text { not active on F11 } \\ & =1(1): \text { Out } 9 \text { active on F11 } \\ \text { Bit } 1 & =0(0): \text { Out10 not active on F11 } \\ & =1(2): \text { Out10 active on F11 } \\ \text { Bit } 2 & =0(0): \text { Out11 not active on F11 } \\ & =1(4): \text { Out11 active on F11 } \\ \text { Bit } 3 & =0(0): \text { Out12 not active on F11 } \end{aligned} \end{aligned}$


			$\begin{aligned} & =1(8): \text { Out12 active on F11 } \\ \text { Bit } 4 & =0(0): \text { Out13 not active on F11 } \\ & =1(16): \text { Out13 active on F11 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F11 } \\ & =1(32): \text { Out14 active on F11 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F11 } \\ & =1(64): \text { Out15 active on F11 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F11 } \\ & =1(128): \text { Out16 active on F11 } \end{aligned}$
178	0	0-255	```F11 mapping, Backward move mapping, low byte Bit \(0=0(0)\) : Out1 not active on F11 \(=1(1):\) Out 1 active on F11 Bit \(1=0(0)\) : Out2 not active on F11 = 1(2): Out2 active on F11 Bit \(2=0(0)\) : Out 3 not active on F11 \(=1(4):\) Out 3 active on F11 Bit \(3=0(0)\) : Out 4 not active on F11 \(=1(8):\) Out4 active on F11 Bit \(4=0(0)\) : Out5 not active on F11 = 1(16): Out5 active on F11 Bit \(5=0(0)\) : Out6 not active on F11 = 1(32): Out6 active on F11 Bit \(6=0(0)\) : Out7 not active on F11 = 1(64): Out7 active on F11```


			$\begin{aligned} \text { Bit } 7 & =0(0): \text { Out8 not active on F11 } \\ & =1(128): \text { Out8 active on F11 } \end{aligned}$
179	0	0-255	F11 mapping, Backward move mapping, high byte   Bit $0=0(0)$ : Out9 not active on F11   = 1(1): Out9 active on F11   Bit $1=0(0)$ : Out10 not active on F11   = 1(2): Out10 active on F11   Bit $2=0(0)$ : Out11 not active on F11   = 1(4): Out11 active on F11   Bit $3=0(0)$ : Out12 not active on F11   = 1(8): Out12 active on F11   Bit $4=0(0)$ : Out13 not active on F11   $=1(16):$ Out13 active on F11   Bit $5=0(0)$ : Out14 not active on F11   $=1(32)$ : Out14 active on F11   Bit $6=0(0)$ : Out15 not active on F11   = 1(64): Out15 active on F11   Bit $7=0(0)$ : Out 16 not active on F11   = 1(128): Out16 active on F11
180	0	0-255	F12 mapping, Forward move mapping, low byte Bit $0=0(0)$ : Out1 not active on F12   = 1(1): Out1 active on F12   Bit $1=0(0)$ : Out 2 not active on F12   = 1(2): Out2 active on F12


181	0	0-255	$\begin{aligned} & \text { F12 mapping, Forward move mapping, high byte } \\ & \begin{aligned} \text { Bit } 0 & =0(0): \text { Out } 9 \text { not active on F12 } \\ & =1(1): \text { Out } 9 \text { active on F12 } \\ \text { Bit } 1 & =0(0): \text { Out10 not active on F12 } \\ & =1(2): \text { Out } 10 \text { active on F12 } \\ \text { Bit } 2 & =0(0): \text { Out1 } 1 \text { not active on F12 } \\ & =1(4): \text { Out } 11 \text { active on F12 } \\ \text { Bit } 3 & =0(0): \text { Out12 not active on F12 } \\ & =1(8): \text { Out } 12 \text { active on F12 } \\ \text { Bit } 4 & =0(0): \text { Out13 not active on F12 } \\ & =1(16): \text { Out } 13 \text { active on F12 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F12 } \end{aligned} \end{aligned}$


			$\begin{aligned} & =1(32): \text { Out14 active on F12 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F12 } \\ & =1(64): \text { Out15 active on F12 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F12 } \\ & =1(128): \text { Out16 active on F12 } \end{aligned}$
182	0	0-255	F12 mapping, Backward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F12   $=1(1):$ Out 1 active on F12   Bit $1=0(0)$ : Out 2 not active on F12   = 1(2): Out2 active on F12   Bit $2=0(0)$ : Out 3 not active on F12   $=1(4):$ Out 3 active on F12   Bit $3=0(0)$ : Out 4 not active on F12   $=1(8):$ Out 4 active on F12   Bit $4=0(0)$ : Out5 not active on F12   = 1(16): Out5 active on F12   Bit $5=0(0)$ : Out6 not active on F12   $=1(32)$ : Out6 active on F12   Bit $6=0(0)$ : Out7 not active on F12   = 1(64): Out7 active on F12   Bit $7=0(0)$ : Out8 not active on F12   $=1(128):$ Out8 active on F12
183	0	0-255	F12 mapping, Backward move mapping, high byte Bit $0=0(0)$ : Out9 not active on F12


			$\begin{aligned} &=1(1): \text { Out9 active on F12 } \\ & \text { Bit } \begin{aligned} 1 & =0(0): \text { Out10 not active on F12 } \\ & =1(2): \text { Out10 active on F12 } \\ \text { Bit } 2 & =0(0): \text { Out11 not active on F12 } \\ & =1(4): \text { Out11 active on F12 } \\ \text { Bit } 3 & =0(0): \text { Out12 not active on F12 } \\ & =1(8): \text { Out12 active on F12 } \\ \text { Bit } 4 & =0(0): \text { Out13 not active on F12 } \\ & =1(16): \text { Out13 active on F12 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F12 } \\ & =1(32): \text { Out14 active on F12 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F12 } \\ & =1(64): \text { Out15 active on F12 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F12 } \\ & =1(128): \text { Out16 active on F12 } \end{aligned} .=\text { en } \end{aligned}$
184	0	0-255	```F13 mapping, Forward move mapping, low byte Bit \(0=0(0)\) : Out1 not active on F13 = 1(1): Out1 active on F13 Bit \(1=0(0)\) : Out 2 not active on F13 = 1(2): Out2 active on F13 Bit \(2=0(0)\) : Out3 not active on F13 \(=1(4):\) Out 3 active on F13 Bit \(3=0(0)\) : Out 4 not active on F13 \(=1(8):\) Out4 active on F13```


185	0	0-255	```F13 mapping, Forward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F13 = 1(1): Out9 active on F13 Bit \(1=0(0)\) : Out10 not active on F13 = 1(2): Out10 active on F13 Bit \(2=0(0)\) : Out11 not active on F13 = 1(4): Out11 active on F13 Bit \(3=0(0)\) : Out12 not active on F13 = 1(8): Out12 active on F13 Bit \(4=0(0)\) : Out13 not active on F13 \(=1(16):\) Out13 active on F13 Bit \(5=0(0)\) : Out14 not active on F13 \(=1(32):\) Out14 active on F13 Bit \(6=0(0)\) : Out15 not active on F13 = 1(64): Out15 active on F13 Bit \(7=0(0)\) : Out16 not active on F13```


			= 1(128): Out16 active on F13
186	0	0-255	F13 mapping, Backward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F13   $=1(1):$ Out1 active on F13   Bit $1=0(0)$ : Out 2 not active on F13   = 1(2): Out2 active on F13   Bit $2=0(0)$ : Out3 not active on F13   $=1(4):$ Out 3 active on F13   Bit $3=0(0)$ : Out 4 not active on F13   = 1(8): Out4 active on F13   Bit $4=0(0)$ : Out5 not active on F13   = 1(16): Out5 active on F13   Bit $5=0(0)$ : Out6 not active on F13   $=1(32):$ Out6 active on F13   Bit $6=0(0)$ : Out7 not active on F13   $=1(64):$ Out7 active on F13   Bit $7=0(0)$ : Out8 not active on F13   $=1(128)$ : Out8 active on F13
187	0	0-255	F13 mapping, Backward move mapping, high byte   Bit $0=0(0)$ : Out9 not active on F13   = 1(1): Out9 active on F13   Bit $1=0(0)$ : Out10 not active on F13   = 1(2): Out10 active on F13   Bit $2=0(0)$ : Out11 not active on F13


			$\begin{aligned} & =1(4): \text { Out11 active on F13 } \\ \text { Bit } 3 & =0(0): \text { Out12 not active on F13 } \\ & =1(8): \text { Out12 active on F13 } \\ \text { Bit } 4 & =0(0): \text { Out13 not active on F13 } \\ & =1(16): \text { Out13 active on F13 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F13 } \\ & =1(32): \text { Out14 active on F13 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F13 } \\ & =1(64): \text { Out15 active on F13 } \\ \text { Bit } 7 & =0(0): \text { Out1 } 6 \text { not active on F13 } \\ & =1(128): \text { Out16 active on F13 } \end{aligned}$
188	0	0-255	F14 mapping, Forward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F14   $=1(1):$ Out 1 active on F14   Bit $1=0(0)$ : Out2 not active on F14   = 1(2): Out2 active on F14   Bit $2=0(0)$ : Out 3 not active on F14   = 1(4): Out3 active on F14   Bit $3=0(0)$ : Out 4 not active on F14   = 1(8): Out4 active on F14   Bit $4=0(0)$ : Out5 not active on F14   = 1(16): Out5 active on F14   Bit $5=0(0)$ : Out6 not active on F14   = 1(32): Out6 active on F14


			$\begin{aligned} \text { Bit } 6 & =0(0): \text { Out7 not active on F14 } \\ & =1(64): \text { Out7 active on F14 } \\ \text { Bit } 7 & =0(0): \text { Out8 not active on F14 } \\ & =1(128): \text { Out8 active on F14 } \end{aligned}$
189		0-255	F14 mapping, Forward move mapping, high byte   Bit $0=0(0)$ : Out 9 not active on F14   = 1(1): Out9 active on F14   Bit $1=0(0)$ : Out10 not active on F14   = 1(2): Out10 active on F14   Bit $2=0(0)$ : Out11 not active on F14   = 1(4): Out11 active on F14   Bit $3=0(0)$ : Out12 not active on F14   $=1(8)$ : Out12 active on F14   Bit $4=0(0)$ : Out13 not active on F14   $=1(16):$ Out13 active on F14   Bit $5=0(0)$ : Out14 not active on F14   $=1(32):$ Out14 active on F14   Bit $6=0(0)$ : Out15 not active on F14   $=1(64):$ Out15 active on F14   Bit $7=0(0)$ : Out 16 not active on F14   $=1(128)$ : Out16 active on F14
190	0	0-255	F14 mapping, Backward move mapping, low byte Bit $0=0(0)$ : Out1 not active on F14   $=1(1):$ Out1 active on F14


			Bit 1 $=0(0):$ Out2 not active on F14    $=1(2):$ Out2 active on F14   Bit 2 $=0(0):$ Out3 not active on F14    $=1(4):$ Out3 active on F14   Bit 3 $=0(0):$ Out 4 not active on F14    $=1(8):$ Out4 active on F14   Bit 4 $=0(0):$ Out5 not active on F14    $=1(16):$ Out5 active on F14   Bit 5 $=0(0):$ Out6 not active on F14    $=1(32):$ Out6 active on F14   Bit 6 $=0(0):$ Out 7 not active on F14    $=1(64):$ Out 7 active on F14   Bit 7 $=0(0):$ Out 8 not active on F14    $=1(128):$ Out8 active on F14
191	0	0-255	F14 mapping, Backward move mapping, high byte Bit $0=0(0)$ : Out9 not active on F14   = 1(1): Out9 active on F14   Bit $1=0(0)$ : Out10 not active on F14   = 1(2): Out10 active on F14   Bit $2=0(0)$ : Out11 not active on F14   = 1(4): Out11 active on F14   Bit $3=0(0)$ : Out12 not active on F14   = 1(8): Out12 active on F14   Bit $4=0(0)$ : Out13 not active on F14


			$\begin{aligned} & =1(16): \text { Out13 active on F14 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F14 } \\ & =1(32): \text { Out14 active on F14 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F14 } \\ & =1(64): \text { Out15 active on F14 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F14 } \\ & =1(128): \text { Out16 active on F14 } \end{aligned}$
192	0	0-255	F15 mapping, Forward move mapping, low byte   Bit $0=0(0)$ : Out1 not active on F15   $=1(1):$ Out1 active on F15   Bit $1=0(0)$ : Out 2 not active on F15   = 1(2): Out2 active on F15   Bit $2=0(0)$ : Out 3 not active on F15   = 1(4): Out3 active on F15   Bit $3=0(0)$ : Out 4 not active on F15   $=1(8):$ Out 4 active on F15   Bit $4=0(0)$ : Out5 not active on F15   $=1(16):$ Out5 active on F15   Bit $5=0(0)$ : Out6 not active on F15   $=1(32)$ : Out6 active on F15   Bit $6=0(0)$ : Out7 not active on F15   $=1(64):$ Out7 active on F15   Bit $7=0(0)$ : Out8 not active on F15   $=1(128)$ : Out8 active on F15


193	0	0-255	```F15 mapping, Forward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F15 = 1(1): Out9 active on F15 Bit \(1=0(0)\) : Out10 not active on F15 = 1(2): Out10 active on F15 Bit \(2=0(0)\) : Out11 not active on F15 \(=1(4):\) Out11 active on F15 Bit \(3=0(0)\) : Out12 not active on F15 \(=1(8):\) Out12 active on F15 Bit \(4=0(0):\) Out13 not active on F15 \(=1(16):\) Out13 active on F15 Bit \(5=0(0)\) : Out14 not active on F15 \(=1(32):\) Out14 active on F15 Bit \(6=0(0)\) : Out15 not active on F15 = 1(64): Out15 active on F15 Bit \(7=0(0)\) : Out 16 not active on F15 \(=1(128):\) Out16 active on F15```
194	0	0-255	F15 mapping, Backward move mapping, low byte Bit $0=0(0)$ : Out1 not active on F15   = 1(1): Out1 active on F15   Bit $1=0(0)$ : Out 2 not active on F15   = 1(2): Out2 active on F15   Bit $2=0(0)$ : Out 3 not active on F15   $=1(4):$ Out 3 active on F15


195	0	0-255	F15 mapping, Backward move mapping, high byte Bit $0=0(0)$ : Out 9 not active on F15   = 1(1): Out9 active on F15   Bit $1=0(0)$ : Out10 not active on F15   = 1(2): Out10 active on F15   Bit $2=0(0)$ : Out11 not active on F15   = 1(4): Out11 active on F15   Bit $3=0(0)$ : Out12 not active on F15   = 1(8): Out12 active on F15   Bit $4=0(0)$ : Out13 not active on F15   $=1(16):$ Out13 active on F15   Bit $5=0(0)$ : Out14 not active on F15   = 1(32): Out14 active on F15   Bit $6=0(0)$ : Out15 not active on F15


			$\begin{aligned} & =1(64): \text { Out15 active on F15 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F15 } \\ & =1(128): \text { Out16 active on F15 } \end{aligned}$
196	0	0-255	```F16 mapping, Forward move mapping, low byte Bit \(0=0(0)\) : Out1 not active on F16 \(=1(1):\) Out 1 active on F16 Bit \(1=0(0)\) : Out2 not active on F16 = 1(2): Out2 active on F16 Bit \(2=0(0)\) : Out3 not active on F16 = 1(4): Out3 active on F16 Bit \(3=0(0)\) : Out 4 not active on F16 \(=1(8):\) Out4 active on F16 Bit \(4=0(0)\) : Out5 not active on F16 = 1(16): Out5 active on F16 Bit \(5=0(0)\) : Out6 not active on F16 = 1(32): Out6 active on F16 Bit \(6=0(0)\) : Out7 not active on F16 = 1(64): Out7 active on F16 Bit \(7=0(0)\) : Out8 not active on F16 \(=1(128)\) : Out8 active on F16```
197	0	0-255	F16 mapping, Forward move mapping, high byte Bit $0=0(0)$ : Out 9 not active on F16   = 1(1): Out9 active on F16   Bit $1=0(0)$ : Out10 not active on F16


			$\begin{aligned} & =1(2): \text { Out10 active on F16 } \\ \text { Bit } 2 & =0(0): \text { Out11 not active on F16 } \\ & =1(4): \text { Out11 active on F16 } \\ \text { Bit } 3 & =0(0): \text { Out12 not active on F16 } \\ & =1(8): \text { Out12 active on F16 } \\ \text { Bit } 4 & =0(0): \text { Out13 not active on F16 } \\ & =1(16): \text { Out13 active on F16 } \\ \text { Bit } 5 & =0(0): \text { Out14 not active on F16 } \\ & =1(32): \text { Out } 14 \text { active on F16 } \\ \text { Bit } 6 & =0(0): \text { Out15 not active on F16 } \\ & =1(64): \text { Out15 active on F16 } \\ \text { Bit } 7 & =0(0): \text { Out16 not active on F16 } \\ & =1(128): \text { Out16 active on F16 } \end{aligned}$
198	0	0-255	```F16 mapping, Backward move mapping, low byte Bit \(0=0(0)\) : Out1 not active on F16 \(=1(1):\) Out1 active on F16 Bit \(1=0(0)\) : Out2 not active on F16 = 1(2): Out2 active on F16 Bit \(2=0(0)\) : Out 3 not active on F16 = 1(4): Out3 active on F16 Bit \(3=0(0)\) : Out 4 not active on F16 = 1(8): Out4 active on F16 Bit \(4=0(0)\) : Out5 not active on F16 = 1(16): Out5 active on F16```


			$\begin{aligned} \text { Bit } 5 & =0(0): \text { Out6 not active on F16 } \\ & =1(32): \text { Out6 active on F16 } \\ \text { Bit } 6 & =0(0): \text { Out7 not active on F16 } \\ & =1(64): \text { Out } 7 \text { active on F16 } \\ \text { Bit } 7 & =0(0): \text { Out8 not active on F16 } \\ & =1(128): \text { Out8 active on F16 } \end{aligned}$
199	0	0-255	```F16 mapping, Backward move mapping, high byte Bit \(0=0(0)\) : Out 9 not active on F16 = 1(1): Out9 active on F16 Bit \(1=0(0)\) : Out10 not active on F16 = 1(2): Out10 active on F16 Bit \(2=0(0)\) : Out11 not active on F16 = 1(4): Out11 active on F16 Bit \(3=0(0)\) : Out12 not active on F16 \(=1(8):\) Out12 active on F16 Bit \(4=0(0)\) : Out13 not active on F16 \(=1(16):\) Out13 active on F16 Bit \(5=0(0)\) : Out14 not active on F16 \(=1(32):\) Out14 active on F16 Bit \(6=0(0)\) : Out15 not active on F16 \(=1(64):\) Out15 active on F16 Bit \(7=0(0)\) : Out16 not active on F16 \(=1(128):\) Out16 active on F16```

